毫米波芯片(清洁能源股票)

2022-07-29 0:33:22 股票 xialuotejs

毫米波芯片



本文目录一览:



一群孤独创业的“中年人团队”,欢迎志同道合的同志讨论分享心得~

自古英雄出少年,我们知道北大有一个数学天才外号“韦神”,而今天要聊的这位26岁的副教授张志维也绝非浪得虚名!圈内人称“维神”,曾与英皇家工程院院士Vincent Fusco合作研究,后者给他的评价是:在微波毫米波领域的造诣已经处于全球领先地位!

怎么这么年轻就当了副教授?

“95后”博士张志维来自于杭州电子科技大学,他坦言自己的目标就是研发属于国内自己的芯片!张志维21岁就大学毕业,5年硕博连读,毕了业也才26岁。因为他带领的团队在毫米波通信芯片领域取得了成果,通讯范围达到了10公里,可以满足华为5G甚至6G的需要,一毕业就被学校聘为副教授!

可以说在微波毫米波领域,26岁的张志维就是名副其实的圈中大佬!5年硕博连读张志维发表了19篇SCI论文,其中10篇是以第一作者的身份。当其他同学还在操心找工作的事,已经有大厂以60万年薪来挖维神,但维神不为所动,依然选择留校!

厘米波和毫米波

任正非说,5G被夸大了,一个小盒子而已,搞得好像比原子弹还可怕,有点危言耸听了!5G其实是早年一位外国教授在美发表的一篇论文中提出的一个概念,美和华为都捕捉到了这个信息,并分别展开了研究。在标准上有毫米波和厘米波之分,两个都选没有那么多精力,华为和美都只能选一个!

美选的是毫米波,带宽远比5G宽,但致命的缺点是传输距离短,美赌的是5G不会那么快产业化!华为没有盲目跟风,选的是中频厘米波!任正非笑称,不能说华为有多厉害,只能说华为赌对了,短短10年华为就实现了5G的产业化,这是当初美没有预测到的!

很明显毫米波不能用于5G最主要的原因就是传输距离短!如果有谁能够搞定这个难题,无疑毫米波会比厘米波有更多的优势!这不,26岁的维神做到了!如果这个技术被某些大厂得到会不会挑战到华为5G在全球的领先地位呢?目前答案还是不太明朗的!有网友呼吁,华为快出手,把张教授收了,在学校的发展怎么会比在华为的发展更好呢?你才26岁而已,出来拼一拼,不要在学校里终老!

其实在毫米波领域,华为也一直没有放弃研究,任正非预测,毫米波的产业化至少还得10年,到那个时候,华为5G的全球铺设早已完成部署了!新的蜂窝系统到那个时候能否使用目前还不十分清楚。任正非表示,这几年华为运气不错,总是在关键时候做出了相对正确的选择,才能有今天的成绩和规模!

华为打算出手么?

不得不说,毫米波在传输速度上要比厘米波有更大的优势,优势就体现在一个“快”字上!如今是信息大爆炸的时代,谁获取网络信息更快,可能就能抢占先机!维神在微波毫米波技术上的突破是否能完美兼容华为的技术,现在还未可知,但如果有机会的话,笔者认为华为还是应该考虑出手的!

通信芯片和手机芯片

有网友质疑,一个26岁的年轻人号称打造国内自己的芯片,是不是狂了点?EUV光刻机技术搞定了么?没有光刻机拿什么造芯片?其实通信芯片与手机芯片不同,它是不需要使用EUV光刻机的,普通的DUV光刻机就可以胜任。而这种DUV光刻机并不在荷ASML的制裁清单之列,我们是可以买到的!

再说国内的上海微电子已经攻克了除EUV、DUV光刻机以外的所有光刻机技术,正在研发DUV光刻机,相信在不久的将来就可以实现DUV光刻机的国产化,所以说这种5G必备的通信芯片实现国产化并不是一些人认为的完全不可能做到的事!

写在后面

不管怎么说,国内的技术肯定会优先给国内的企业使用,华为、中兴其实都有机会!笔者作为花粉,当然更希望华为能再次把握住这样一个机会,把微波毫米波远距离传输技术也收入囊中!带给我们更高端的5G体验!

华为将迎来大将?26岁小伙自研毫米波芯片实现突破,传输距离10km

华为机会来了?26岁副教授突破毫米波技术,可满足6G需求

文中图片均来源于网络,如有版权问题请联系作者删除!




清洁能源股票

川财证券有限责任公司孙灿近期对上海电力进行研究并发布了研究报告《上海电力深度报告:火电盈利修复,向智慧能源转型》,本报告对上海电力给出增持评级,当前股价为11.26元。

上海电力(600021)

公司在国内火电企业中清洁能源占比领先,继续大力推动新能源装机增长,同时积极向综合智慧能源方向转型。截至 2021年底,公司控股装机容量 1905.31万千瓦,同比增长 13.66%,其中新能源控股装机容量 765.89 万千瓦,同比增长 31.22%。清洁能源占比 55.24%,同比上升了 6.11 个百分点。公司未来将继续兼顾高效清洁火电和清洁能源的共同发展,清洁能源装机占比稳步提高。公司切实把综合智慧能源服务当作转型发展的突破口,以数字化、智慧化能源生产、储存、供应、消费和服务等为主线,兼顾技术与经济性,因地制宜、高质量推动综合智慧能源项目开发。

公司积极加强成本控制,同时受益于国家对煤炭的稳价保供,公司煤电和供热业务收益 2022 有望有所改善。发改委在 2022 年 2 月 24 日发布的关于进一步完善煤炭市场价格形成机制的通知。在通知中着力强调引导煤炭价格在合理区间运行,同时完善煤、电价格传导机制以及引导煤、电价格主要通过中长期交易形成两个重要要求。公司承担上海的电力和热力保障职责,2022 年公司争取按照相关政策继续提高电煤的长协保障的比例,以确保公司燃煤成本受控经营情况改善,以保障正常的城市燃煤供电和供热的稳定运行。2022 年一季度,公司整体实现净利润 1.01 亿元,仍低于 2020 年一季度水平,但火电和供热业务亏损明显改善。

公司 21 年加快国企改革,设立合理目标推行股权激励,以推动和保障企业业绩的超预期释放。从公司的期权行权业绩条件可以看到,公司的业绩导向指标主要是净资产收益率,净利润复合增长率、国企 EVA 和清洁能源装机占比,也基本体现了公司未来的发展战略和经营目标,主要重视资本回报以及积极发展清洁能源。本次股票期权激励,可以把公司发展和经营战略转变为可执行的量化指标,刺激公司核心员工更好的执行公司战略,对经营业绩负责,将是公司经营业绩和业务发展战略的落地的有利保障。

首次覆盖予以“增持”评级。我们预计 2022-2024 年,公司可实现营业收入350.35、417.72 和 498.31 亿元,归属母公司净利润 8.32、11.88 和 16.88 亿元。总股本 26.17 亿股,对应 EPS0.32、0.45 和 0.65 元。估值要点2022 年 7 月 6 日,股价 10.84 元,对应市值 283.7 亿元,2022-2024 年 PE 约为 34、24 和 17 倍。公司继续稳步推进多元化能源发展,保持及扩大低碳新能源装机比重,积极推进综合智慧能源业务发展,目标是成为领先的区域性低碳综合能源供应商,充分受益国家双碳战略。

风险提示:煤炭价格控制,新能源扩张进展,智慧能源业务拓展低于预期。

证券之星数据中心根据近三年发布的研报数据计算,中信建投证券高兴研究员团队对该股研究较为深入,近三年预测准确度均值为41.92%,其预测2022年度归属净利润为盈利20.45亿,根据现价换算的预测PE为14.85。

最新盈利预测明细

该股最近90天内共有1家机构给出评级,买入评级1家;过去90天内机构目标均价为17.0。根据近五年财报数据,证券之星估值分析工具显示,上海电力(600021)好公司0.5星,好价格2星,综合评分1星。(评分范围:0 ~ 5星,最高5星)




毫米波芯片概念股龙头

2015年左右,NXP汽车芯片大厂对纳瓦电子等少数本土企业开放77GHz CMOS 毫米波雷达芯片,国产毫米波雷达的征程由此开始。2016年TI向任意客户全面开放77GHz CMOS毫米波雷达芯片,引发了第一波车载毫米波雷达创业热潮。

一转眼国产毫米波雷达走过了第一个5年,随着智能驾驶系统等级的不断提高,智驾系统对毫米波雷达传感器依赖权重越来越大,对毫米波雷达本身也提出了更高的性能要求。NXP半导体厂商通过在车载毫米波雷达芯片领域持续布局,率先推出更高性能的成像毫米波雷达芯片,开启了车载毫米波雷达的新一轮量产竞赛——成像毫米波雷达。

可以说,国产车载毫米波雷达的发展史,也是毫米波雷达芯片的持续迭代史。

正是预见到这一点,纳瓦电子在专注于自身技术实力提升的同时,一直与主流的毫米波雷达芯片厂商保持着紧密的合作。基于此,纳瓦电子先后推出了多款角雷达及前向雷达量产产品,同时布局了面向L3、L4自动驾驶应用的高精成像毫米波雷达,并与多家主流车企达成定点合作,成功跻身国产车载毫米波雷达供应商第一阵营。

立足平台化,推进毫米波雷达量产

纳瓦电子的前向毫米波雷达,角雷达,成像毫米波雷达均已规模化量产;针对国内不同层次的多样需求,纳瓦布局了NXP、TI、加特兰三大平台,适应市场对价格和性能需求的不断变化。

纳瓦电子CEO 李建林,盖世汽车

“现在国内客户的车型十分多样化,这要求我们的产品也必须多样化,才能更好地匹配市场需求。”近日,纳瓦电子CEO李建林在接受盖世汽车采访时表示。或许在很多人看来,维护多的产品并不好,但不可否认,对于一家成长中的企业而言,如果没有多样化的产品,往往也很难有更多的客户。

在前向雷达方面,纳瓦电子分别基于NXP的S32R274+TEF8102和S32R294+TEF8102推出了NOVA77GF-B和NOVA77GF-B PLUS两代前向77GHz毫米波雷达产品。其中NOVA77GF-B PLUS最远探测距离可达220m,最大探测范围达±45°,距离分辨率约为0.4米,角度分辨率为3.5°,已于今年Q1实现批量生产。

角雷达种类相对丰富一些,针对前述三种平台,纳瓦电子均有对应的解决方案,并且仍在持续迭代升级。其中基于TI平台的最新一代角雷达,选用了AWR2944方案,最远探测距离可达120m,测角范围达±75°,距离分辨率为0.2m,角度分辨率为6°,已于今年2月正式实现批量生产。

最新角雷达Calterah方案采用的是加特兰CAL77S244-AE SoC方案,最远探测距离可达110m,测角范围达±75°,距离分辨率为0.45m,角度分辨率为4.6°,同样于今年2月正式实现批量生产。

纳瓦电子

李建林指出,纳瓦电子在角雷达方面的解决方案之所以更加多样化,主要是因为市场对角雷达的需求量更大。据相关分析数据显示,目前市场上的L2+辅助驾驶解决方案中,很多都是采用的5R1V设计,即4颗角雷达+1颗前向雷达,或者6R1V,后面再加一颗后向雷达,导致对角雷达的需求是前向雷达的数倍。

事实上不仅纳瓦电子,很多本土企业布局车载雷达都是先以角雷达为切入点。比较之下,前向雷达由于需求量相对较小,加之在各项性能指标以及芯片的利用率方面,要求均比角雷达更高,布局的本土企业相对较少。从这一点上来讲,纳瓦电子其实也是国内少有能成功实现车载前向雷达量产的企业。

而除了传统车载雷达,纳瓦电子也在推进全新一代成像雷达研发。据李建林介绍,纳瓦电子共规划了两款成像雷达产品,一款是6发8收,既可作为角雷达也可以作为前向雷达,一款是12发16收,主要瞄准前向雷达。

基于这两款产品,纳瓦电子的目标是助力整车厂构建5R1V的整体成像解决方案,应用于L3及L4高阶自动驾驶系统研发。其中前者已经处于量产状态,正在跟整车厂对接测试,后者计划今年年底实现量产,预计明年开始大批量应用,基本与当前L3+高阶自动驾驶推进节奏一致。

就产品性能来看,纳瓦电子6发8收成像雷达最远探测距离可达320m,距离分辨率为0.35m,3dB水平波束宽度小于1.6°,方位角精度± 0.1°,3dB俯仰面波束宽度小于2.4°,俯仰角精度± 0.2° 。点云数据等效多线激光雷达,达32000pts/s,可识别180米外10cm高类似易拉罐的静止物体,整体性能可媲美某国际大厂12T16R成像雷达。

纳瓦电子

“因为纳瓦采用的是一款成像雷达专用处理器,其中内置了SPT雷达信号加速单元,可以实现雷达信号从1D FFT经傅里叶变换到2D FFT,再由3D FFT到CFAR数据信号的加速处理。” 李建林解释道。值得关注的是,在芯片价格上尽管专用雷达芯片往往比单颗SOC雷达芯片价格贵一些,但由于其中增加了专门的硬件加速器,可以更好地发挥芯片性能,最终使产品具有更高的性价比。

他认为,这将是未来车载毫米波雷达的主流趋势,即车载雷达的终极PK将是处理器的先进性及专用性,毫米波雷达厂商要想赢得最终的胜利,具备高处理能力的专用芯片不可或缺,而这也将是纳瓦电子的长期选择。

“因为成像雷达的性能与通道数量、天线面积等正相关,理论上通道数量越多雷达性能越高,但一辆乘用车上雷达的安装空间是有限的,当天线进化到一定程度后没办法再增大,这时候只能依赖于处理器能力的提升。” 李建林表示。简言之,未来要做好毫米波雷达,选择一个好的处理器平台将尤为关键。

车载雷达的竞争,是时间沉淀的竞争

在车载毫米波雷达赛道,已经拥有9款量产产品的纳瓦电子无疑是令人羡慕的。但要知道,仅仅量产第一款产品,纳瓦就花了将近5年的时间,背后的艰难可想而知。

“在评判毫米波雷达性能时,大家常常会用这些指标,比如探测距离、FOV、分辨率等,但其实一款好的雷达更应该具有较高的数据稳定性和一致性,各方面指标相对比较均衡,数据稳定性高。” 李建林表示。

但这并不容易。在他看来,要做好车载毫米波雷达,必须具备三个要素:首先,团队本身应该具备微波通信与算法的基因;其次,必须对汽车电子有深度的了解;再者,必须懂得DFM设计和制造,能够把设计通过工程以及持续不断的迭代高可靠地制造出来,并形成商业闭环。

“或许这几件事单独看起来都不难,但要是合在一起,并且每个都要做好,很难,需要很长时间的沉淀。”李建林指出。

一个典型的生产挑战是,一般的汽车电子产品经过SMT贴片、各种车规级验证测试之后,基本完成了80%~90%的工序,但如果是毫米波雷达产品,进展到这一步只完成了10%~20%的工序,还有30%~40%是PCB 、天线 、外壳、整机装配和一致性检测工序,即便这些都完成了,仍需要最后最重要的50%射频指标校准工序,对每一款雷达进行唯一的校准,以保证足够高的产品一致性。

如此一来,正向研发一款车规级毫米波雷达至少得花费近5年的时间,其中包括开展大量的工程测试,进行数次非量产迭代,以持续提升毫米波雷达的安全型、可靠性和一致性。 “企业口碑很重要,一个企业把口碑做差很容易,但想要做好很难,而且国内的优质客户就那么多,所以我们给到客户的产品一定要是高可用、高可靠的”。李建林指出。

纳瓦电子

正是这样严苛的产品理念,纳瓦电子首款产品从2015年研发直到2018年才正式量产。但从2020年开始,纳瓦电子的“上新”速度明显快了起来,基本每年都会迭代2~3款新产品,而这个“快”很大程度上就得益于前面五六年的积累沉淀。

在此过程中,纳瓦电子与NXP、TI、加特兰等芯片厂商紧密的合作关系,也起到了很重要的支撑作用,这使其得以相较于同类企业更早2年获得来自芯片厂内部研发级工程样片的研发资源支持。与此同时还有来自投资方的协同支持,也为纳瓦电子加速毫米波雷达落地提供了关键助力。

值得注意的是,随着整车市场竞争越来越激烈,主机厂产品迭代速度不断加快,对零部件厂商的快速响应及配合要求也越来越严苛,这对于在车载毫米波雷达领域没有足够长时间沉淀的企业其实十分不友好。

“因为整车厂要求你跑得快,但如果你没有沉淀的话,是跑不快的。从这一点上来讲,车载毫米波雷达企业之间的竞争,归根结底是时间沉淀的竞争。国产车载毫米波雷达赛道经历第一个5年的考验,留下的企业已经为数不多,下一个5年会更少。” 基于近二十年的汽车毫米波雷达和汽车电子相关工作经验,以及近十年的创业经历,李建林总结道。

“聚焦”车载雷达,目标成为本土TOP1

在国产车载毫米波雷达第一阶段的角逐中,纳瓦电子的表现不可谓不亮眼。特别是基于多元化的产品组合,纳瓦电子不仅可以给整车厂供应单一毫米波雷达产品,还能提供整体打包解决方案,因此正成为越来越多车企的首选。

过去由于整车上毫米波雷达搭载量较低,整车厂对于供应商的一体化其实并没有较高的要求,但随着自动驾驶的快速发展,单车所搭载的毫米波雷达数量越来越多,为了便于推进研发及管理,越来越多的整车厂开始倾向于在角雷达和前向雷达上选择同一家供应商。 “从去年开始,当客户采用5R1V设计的时候,会更主动地选择纳瓦。 ” 李建林表示。

纳瓦电子

但纳瓦电子显然不满足于此,而是瞄准了车载毫米波雷达更大的增量空间。据相关分析数据显示,随着单车毫米波雷达数量从L2的1~3颗增长至L4的5-6颗,其单车价值量有望从L2的87美元增加为L4的490美元。未来3-5年,国内车载毫米波雷达的市场规模预计将实现40%左右的增长,到2023年市场规模有望突破200亿元,2025年进一步增至263亿元。

然而从供给端来看,由于车载毫米波雷达研发量产门槛较高,现阶段真正能实现车规级毫米波雷达大规模商业化的企业还十分有限,即便加上外资巨头也远不能满足市场需求,还存在较大的供应缺口。

正是看到这一点,李建林指出未来纳瓦电子将继续深耕车载毫米波雷达,为此纳瓦正在积极规划下一代乃至下下一代车载毫米波雷达研发。

与此前主要着眼于单一雷达解决方案不同,李建林透露,接下来纳瓦会更多站在客户的角度,考虑基于他们的自动驾驶系统应该如何优化毫米波雷达性能。“比如怎么在域控系统中充分发挥毫米波雷达的性能,毫米波雷达如何与视觉以及激光雷达更好地融合,这是我们未来要做的。”

由于单一的摄像头、毫米波雷达及激光雷达均有各自的感知缺陷,目前来看,基于多传感器融合的感知方案将是自动驾驶向高阶演进的主流路线,比如蔚来ET7、小鹏G9、理想L9、智己L7、威马M7等新车,所配置的传感器数量均达到了30颗左右,其中包括5颗毫米波雷达以及超10颗的摄像头,还有激光雷达等。在这样一个复杂的系统中,毫米波雷达需要具备哪些特征,能够帮助整车厂及自动驾驶公司满足哪些问题,需要企业具备更多的全局观。

产能的持续扩充也是纳瓦电子下一步的重点,尤其自有产能本身还关系到对产品一致性的把控,让企业能够从头到尾把控产品质量,并将决定企业未来的成长空间。此前,纳瓦电子已经在上海嘉定建设了两条77GHz毫米波雷达自动化生产线,年产能为108万台,并成功获得了IATF16949/ISO9001:2015体系认证,正式形成大规模交付装车的商业闭环。

纳瓦电子

李建林透露,在接下来的一年半里,纳瓦电子还将在上海嘉定虹桥北纳瓦总部大楼内新增18条产线,力争2023年年底前实现年产能1800万台。“这些产能都是为客户未来的大规模生产做准备的,只有先做好研发投入、生产投入、产能投入,才能承接更多的客户,而不是有了客户才去准备,到那时就迟了。”

为此纳瓦电子即将完成B轮融资,并计划明年完成C轮融资,2024年登陆科创版上市。与其他很多企业不同的是,在融资过程中纳瓦电子十分注重投资方对纳瓦的协同作用。“我们希望投资纳瓦的企业能深度理解行业,他们投资纳瓦能真正深度合作互相赋能,而不是单纯地提供资金支持。”

纳瓦电子的目标是拿下中国30%以上的市场份额。“在纳瓦成为车载毫米波雷达领域的TOP1供应商之前,我们会一直持续加大投入,做精做专,而非做广。” 谈及长远的发展目标,李建林表示。其中今年,纳瓦电子的目标是产品上进一步聚焦高精成像毫米波雷达和超远距离相控阵雷达,客户上聚焦未来3-5年能突破L3走向L4的重点车企客户,为成为这个细分领域的龙头企业打下坚实基础。




e波段毫米波芯片

近日,华为首款毫米波AI超感传感器正式亮相,据传苹果自研的毫米波射频RF芯片也已完成设计,代号Turaco。联发科与电信龙头中华电信于7日宣布合作,携手于联发科新竹的研发总部打造5G毫米波芯片测试环境。

由于毫米波具有传输速率高、工作带宽大、待用空间广的三大优势,能够更好满足AR、VR、智能物联系统等新兴领域的性能需求。各大厂商开始专注于对毫米波芯片的研究。

什么是毫米波芯片

毫米波是指频率在30GHz-300GHz之间的电磁波,因其波长在毫米级而得名。较于6GHz以下频段,毫米波频段拥有丰富的频谱资源,在载波带宽上具有巨大优势,可实现400MHz和800MHz的大带宽传输,通过不同运营商之间的共建共享,实现超高速率的数据传输。同时,毫米波波长短,所需元器件尺寸较小,便于设备产品的集成化和小型化,符合当下终端市场的主流需求。

毫米波芯片则是能够实现在毫米波频段进行信号收发的IC器件。由于毫米波相控阵芯片集成了毫米波技术和相控阵原理,技术难度高,在过去主要应用在军工领域。得益于5G、6G通讯的快速迭代,毫米波才得以打开民用市场,成为全球通信产业的一大发展方向。Yole预计,到2026年,AiP和毫米波前端模块市场价值将达到27亿美元。

传统的毫米波单片集成电路主要采用化合物半导体工艺,如砷化镓(GaAs)、磷化铟(InP)等,其在毫米波频段具有良好的性能,是该频段的主流集成电路工艺。另一方面,近十几年来硅基(CMOS、SiGe等)毫米波亚毫米波集成电路也取得了巨大进展。

GaAs和InP毫米波芯片

InP材料具有电子迁移率高和漂移速率大的特点,是实现毫米波电路和太赫兹电子器件稳定运行的主要选择。InP基器件具有高频、低噪声、高效率、抗辐照等特点,成为W波段以及更高频率毫米波电路的首选材料。

以GaAs为代表的化合物半导体器件在高频、高速、高带宽以及微波毫米波集成电路中具有明显的优势。目前,以砷化镓(GaAs)为代表的化合物半导体高频器件及电路技术已经进入了成熟期,已被大量应用于高频通信领域,尤其是移动通信和光纤通信领域。

第二代半导体GaAs和InP制作的毫米波5GPA优于硅基CMOS制作的产品,并且可以集成到用于移动设备和5G小电池的射频模块中。

GaN毫米波芯片

氮化镓(GaN)作为第三代宽禁带半导体的代表,具有大的禁带宽度、高的电子迁移率和高介电强度等优点,可以广泛应用于微波毫米波频段的尖端军事装备和民用通信基站等领域。

到2026年,在5G毫米波RFIC市场中,RF收发器和RFFE可能分别达到104亿美元和235亿美元的TAM。

日本Eudyna公司报道了0.15nm栅长的GaN功率器件,在30GHz功率输出密度达13.7W/mm。美国HRL报道了多款E波段、W波段与G波段的GaN基器件,W波段功率密度超过2W/mm,在180GHz上功率密度达到296mW/mm。

硅基毫米波芯片

由于硅工艺在成本和集成度方面的巨大优势,硅基毫米波集成电路的研究已成为当前的研究热点之一。

在国家973计划、863计划和自然科学基金等的支持下,已快速开展研究并取得进展。东南大学毫米波国家重点实验室基于90nm CMOS工艺成功设计了Q、V和W频段放大器、混频器、VCO等器件和W波段接收机、Q波段多通道收发信机以及到200GHz的CMOS倍频器和到520GHz的SiGe振荡器等器件。

毫米波芯片与6G关系

虽然目前的Sub-6GHz频段经过一段时间的发展,可利用的空间相对饱和,但毫米波频段的可利用空间相对更多,受到的干扰也更少。

5G毫米波芯片组包括基带处理器/调制解调器和RFIC组件(例如RF收发器和RF前端)。由于支持5G毫米波的智能手机和其他消费类设备的可用性不断提高,移动设备成为毫米波5G芯片组市场的主要贡献者,到2026年,5G毫米波基带处理器的安装数量将达到38亿。

三星已完成尖端mmWave射频电路(RFIC)和数位/类比前端(DAFE)ASIC的开发,将支援28GHz和39GHz频段的应用;2020年,高通发布了第三代5G调制解调器到天线的解决方案--骁龙X60。骁龙X60使用5nm制程的5G基带,同时也支持毫米波和Sub-6GHz聚合的解决方案。

任正非曾表示:“华为在5G技术方面的成功,是因为押中厘米波;而6G的毫米波是大方向。”

6G网络将支持更高的峰值速率和业务容量,以及低于10厘米的高精定位精度和微米级的传感分辨率。毫米波提供大的带宽,可以有效提升空间和距离的分辨率。在未来互联网的感知和融合中,毫米波将发挥重要的作用。

毫米波芯片瓶颈

因为毫米波频率高,具有分布式参数,本质是从“路”向场演变,其设计工艺和测试都更复杂。

一是,毫米波频率使设计和测试比6GHz以下的射频测试更加困难。

信号路径损耗和阻抗失配在较高频率下被放大,并可能极大地影响信号保真度。6GHz的接口板在电缆、PCB和接触器接口之间的总损耗将小于3到5dB,而设计为在40GHz下工作的接口板在相同的信号链上的损耗将增加2到4倍。

这导致精确校准变得更加困难,而且校准漂移更快,对测试结果产生影响。

大容量硅芯片首次将毫米波测试带入ATE世界。以前的测试是使用台式设备完成的,无法应对未来需要的数量。这促进了高频射频功能的重大发展,可以提供经济生产所需的成本和吞吐量。

对于生产测试,目标是高速进行足够好的测量,保持高吞吐量。这意味着与传统上以较低数量完成的权衡非常不同。

虽然雷达芯片可能有1到3或4条线路,但5G芯片将有30条线路。业内人士表示:“以5G手机可能具有的容量,他们希望一次测试四个或八个,所以现在我们谈论的是超过200毫米波线,而在此之前他们没有进行任何测试。”

二是,高频段毫米波芯片的设计成本更加昂贵。

频段越高的毫米波雷达芯片,对晶体管的截止频率要求也越高,从而需要更先进的工艺节点,成本也愈加昂贵。例如,65nm的CMOS工艺截止频率Fmax可到300GHz,足够用于设计工作在60GHz或77GHz的雷达前端电路。若将工作频率提高到140GHz,那么使用65nm工艺的设计难度将急剧提高。频率越高,封装的信号完整性要求越高,封装的成本也越高。毫米波雷达芯片最终的频段选择,需要在这些因素中折中考虑。

中国毫米波芯片现状

从全球市场看,市面上已有多款与毫米波技术相关的5G芯片。英特尔(Intel)于2017年11月发布了XMM80605G多模基带芯片,该芯片同时支持6GHz以下频段和28GHz毫米波频段。高通已经能够提供商用的毫米波终端芯片X50和X55,天线模组QTM525。

我国5G毫米波产业链成熟度落后于5G低频,也落后于美国、欧洲等国际先进水平。表现在毫米波设备形态单一、功能和性能尚不满足5G组网需求,以及5G毫米波芯片和终端型号较少、覆盖种类和形态不够丰富这几个方面。

其中,阻碍因素主要来自于高频器件,主要包括:高速高精度的数模及模数转换芯片、高频功率放大器、低噪声放大器、滤波器、集成封装天线等等。

政策方面,去年11月,工业和信息化部批复组建国家5G中高频器件创新中心。中心围绕5G中高频器件领域重大需求,聚焦新型半导体材料及工艺、5G中高频核心器件、面向射频前端的硅基毫米波集成芯片等三大研发方向,支撑我国5G中高频器件产业创新发展。

高校方面,清华大学集成电路学院已经研制出采用65nmCMOS工艺研制了应用于卫星通信的毫米波Ka频段射频前端芯片,在单个芯片上集成了8个接收通道或8个发射通道(如图1所示),单通道发射输出功率超过12.71dBm,移相精度达到6bit,幅度控制精度达到5bit,单发射通道功耗为302mW。

应用于宽带卫星通信的65nmCMOS毫米波射频前端芯片(发射组件)清华大学

杭州电子科技大学自主研发E波段毫米波芯片已实现商业化,曾于2018年在德国电信的外场实验中,成功实现全世界首个高阶毫米波外场验证,速率达到70GBps。还在为5G毫米波移动基站样机射频芯片的商业招标中,击败Macom/Triquint/Gotmic等国际大厂,正式成为华为5G通信供应商之一。

中国电科38所发布了一款高性能77GHz毫米波芯片及模组,其发布的封装天线模组包含两颗38所自研77GHz毫米波雷达芯片,该芯片面向智能驾驶领域对核心毫米波传感器需求,采用低成本CMOS(互补金属氧化物半导体工艺),单片集成3个发射通道、4个接收通道及雷达波形产生等。

企业方面,和而泰的子公司铖昌科技是国内微波毫米波T/R芯片领域,除少数国防研究所之外掌握核心技术的民营企业。

2018年和而泰收购铖昌科技正式进军毫米波射频芯片,和而泰能够向市场提供基于GaN、GaAs和硅基工艺的系列化产品,主要包含功率放大器芯片、低噪声放大器芯片、模拟波束赋形芯片及射频开关芯片等。产品已应用于通信、导航、探测、遥感、电子对抗等领域。5G基站用射频芯片目前已完成芯片研制工作;卫星互联网射频芯片已小批量交付。

上海矽杰微电自2016年从上海微技术工业研究院孵化独立以来,一直致力于毫米波雷达芯片的开发,深耕毫米波雷达传感器在消费领域、工业领域、以及汽车领域中应用落地。于2017年开发出国内第一颗具有自主知识产权的高集成度24GHz雷达SoC,目前已拥有一系列的24GHz和77GHz的毫米波雷达芯片。

亚光科技《5G毫米波通信多功能芯片研究》项目是四川省重大科技专项,公司用于通信的毫米波功率放大器已研制成功。

盛路通信研发了在国内技术领先的28G、64单元毫米波有源相控阵,并且在39G、60G以及80G做了相应的阵列天线开发。

中兴通讯基于RIS毫米波的探索,6G方面,当前中兴通讯基于RIS毫米波,进行了RIS的街区覆盖场景的探索。试验表明,无RIS的场景,会限制有效覆盖范围,而增加了RIS的情况下,覆盖范围得到了增强和扩展。

微远芯微研发毫米波雷达芯片及微系统技术,其主要产品为SiCMOS毫米波雷达SOC芯片、IoT低功耗射频收发器芯片、GSM/TD-SCDMA终端功放芯片。

问智微研发微波毫米波系统级芯片(SoC),主要产品包括77GHz汽车雷达收发机射频前端套片、60GHz硅基SoC收发芯片、122GHz混合信号雷达SoC(也称太赫兹混合信号雷达SoC)、微波毫米波收发机SoC;5G移动通讯28GHz相控收发机前端套片等微波毫米波收发机相控多功能芯片。

随着5G的逐渐普及,6G、卫星通信也开始慢慢走入大众的视线。毫米波作为其中的主要角色绝不会缺席。但毫米波仍面临诸多挑战。中国移动研究院无线与终端技术研究所所长丁海煜认为,5G毫米波面临的挑战,一是网络性能不够成熟;二是成本不够低;三是网业协同不够深;四是端到端的标准化不够快。

做好5G才能做好6G,毫米波的发展还需要加强产学研合作,共同推动毫米波产业成熟。


今天的内容先分享到这里了,读完本文《毫米波芯片》之后,是否是您想找的答案呢?想要了解更多毫米波芯片、清洁能源股票相关的财经新闻请继续关注本站,是给小编最大的鼓励。