衍射极限附近的光刻工艺(衍射极限附近的光刻工艺 课后答案)

2023-01-26 1:21:35 证券 xialuotejs

简述光刻的工艺过程(步骤)

1. wafer 表面处理;

2. 旋涂光刻胶(包括抗反射层)

3. 前烘;

4. 曝光;

5. 后烘;

6. 显影,有的需要在显影前进行坚膜;

7. 刻蚀

衍射极限附近的光刻工艺(衍射极限附近的光刻工艺 课后答案) 第1张

光刻技术的工艺流程

常规光刻技术是采用波长为2000~4500埃的紫外光作为图像信息载体,以光致抗蚀剂为中间(图像记录)媒介实现图形的变换、转移和处理,最终把图像信息传递到晶片(主要指硅片)或介质层上的一种工艺(图1)。在广义上,它包括光复印和刻蚀工艺两个主要方面。

①光复印工艺:经曝光系统将预制在掩模版上的器件或电路图形按所要求的位置,精确传递到预涂在晶片表面或介质层上的光致抗蚀剂薄层上。

②刻蚀工艺:利用化学或物理方法,将抗蚀剂薄层未掩蔽的晶片表面或介质层除去,从而在晶片表面或介质层上获得与抗蚀剂薄层图形完全一致的图形。集成电路各功能层是立体重叠的,因而光刻工艺总是多次反复进行。例如,大规模集成电路要经过约10次光刻才能完成各层图形的全部传递。在狭义上,光刻工艺仅指光复印工艺,即图1中从④到⑤或从③到⑤的工艺过程。 常用的曝光方式分类如下:

接触式曝光和非接触式曝光的区别,在于曝光时掩模与晶片间相对关系是贴紧还是分开。接触式曝光具有分辨率高、复印面积大、复印精度好、曝光设备简单、操作方便和生产效率高等特点。但容易损伤和沾污掩模版和晶片上的感光胶涂层,影响成品率和掩模版寿命,对准精度的提高也受到较多的限制。一般认为,接触式曝光只适于分立元件和中、小规模集成电路的生产。

非接触式曝光主要指投影曝光。在投影曝光系统中,掩膜图形经光学系统成像在感光层上,掩模与晶片上的感光胶层不接触,不会引起损伤和沾污,成品率较高,对准精度也高,能满足高集成度器件和电路生产的要求。但投影曝光设备复杂,技术难度高,因而不适于低档产品的生产。现代应用最广的是 1:1倍的全反射扫描曝光系统和x:1倍的在硅片上直接分步重复曝光系统。 直接分步重复曝光系统 (DSW)  超大规模集成电路需要有高分辨率、高套刻精度和大直径晶片加工。直接分步重复曝光系统是为适应这些相互制约的要求而发展起来的光学曝光系统。主要技术特点是:①采用像面分割原理,以覆盖最大芯片面积的单次曝光区作为最小成像单元,从而为获得高分辨率的光学系统创造条件。②采用精密的定位控制技术和自动对准技术进行重复曝光,以组合方式实现大面积图像传递,从而满足晶片直径不断增大的实际要求。③缩短图像传递链,减少工艺上造成的缺陷和误差,可获得很高的成品率。④采用精密自动调焦技术,避免高温工艺引起的晶片变形对成像质量的影响。⑤采用原版自动选择机构(版库),不但有利于成品率的提高,而且成为能灵活生产多电路组合的常规曝光系统。这种系统属于精密复杂的光、机、电综合系统。它在光学系统上分为两类。一类是全折射式成像系统,多采用1/5~1/10的缩小倍率,技术较成熟;一类是1:1倍的折射-反射系统,光路简单,对使用条件要求较低。

美国打压华为后,行业重新洗牌,EUV光刻机不是唯一,后悔吗?

不后悔,高端芯片严重依赖进口,一旦被卡住脖子之后,很多行业都会受到影响,比如华wei就是一个典型的例子。而为了解决芯片问题,最近几年我国也加大对芯片的扶持和研究力度,而且从最近几年各大企业以及各大研究所的实际情况来看,确实取得一些不错的成果。

比如上海微电子目前已经成功研发出28纳米的光刻机,通过多次曝光后,可以用于生产14次纳米的芯片,据说这个制程的光刻机将在2022年量产。除了专业企业的研究之外,我国高校、科研院所也研究出了不少光刻机技术。

比如2018年清华大学的研究团队研发出了双工作台光刻机,这使得我国成为全球第2个拥有双工作台光刻机技术的国家。2019年武汉光电国家研究中心使用远场光学雕刻最小线宽为9纳米的线段,成功研制出9纳米光刻机技术,从而实现了从超分辨率成像到超衍射极限光制造的重大突破。

2020年6月,由中国科学院院士彭练毛和张志勇教授组成的碳基纳米管芯片研发团队在新型碳基半导体领域取得了重大的研究成果,并实现了碳基纳米管晶体管芯片制造技术的全球领先地位。2020年7月,中国科学院苏州纳米技术与纳米仿生研究所成功研发出了一种新型5nm高精度激光光刻加工方法。

再比如西湖大学研究团队研究出了冰刻技术,这一技术被广大网友认为有可能是取代 EVA光刻机的最佳手段。但是这不是要打击大家,而是目前我国光刻机的水平跟国际领先水平确实有很大的差距,这种差距并不是通过实验室搞几个概念出来就可以解决的。

首先、目前我国很多芯片制造技术都处于实验室阶段。

上面我们所提到的这些技术,除了上海微电子可以制造出实实在在的光刻机之外,其他都处于实验室阶段,还没有形成成熟的工艺,距离量产仍然有很长的路要走。其次、即便量产了跟成熟的EUV光刻机仍然有很大的差距即便我们所提到的这些新技术能够量产了,但跟目前的EVA光刻机仍然有很大的差距。

目前荷兰的EVA光刻机已经达到7纳米级别,而且通过芯片代工厂的工艺改进之后,可以用于生产5纳米和3纳米的芯片。而前面我们所提到的这些技术,就算真的实现量产了,最高的工艺水平也只不过是10纳米左右,这个跟当前的EUV光刻机仍然有很大的差距。

我们就拿冰刻技术来说。

冰刻就是利用在零下将近140°的真空环境中,水可以直接凝结成冰的原理,将样品放入真空设备后进行降温处理,然后注入水蒸气,使得样品上凝华出薄冰,形成一层“冰胶”,再用电子束进行照射,并进行材料沉积,去胶剥离之后完成电路图的刻画。

在这个过程当中有一个非常关键的设备,那就是电子束刻机,电子束刻机的分辨率直接决定了芯片的精度。但是目前全球最精度最高的电子束刻机也只不过是10纳米左右,这跟EUV光刻机的精度仍然有较大的差距。而且使用冰刻技术得逐帧进行雕刻,效率要比光刻机慢很多。所以从整体来说,就算冰刻机可以量产了,但它跟目前的EUV光刻机仍然没法相比,两者的差距仍然很大。

最后、芯片工艺不仅涉及某一个设备,而且是一个产业链的问题。

提到芯片卡脖子问题,很多人都简单地理解为我国没法生产高端的EVA光刻机,但实际上制约我国芯片发展的不仅仅是光刻机这么简单。在芯片生产过程当中涉及到很多环节,需要用到很多设备,而目前我国有很多芯片制造设备和材料都从欧美一些国家进口。比如氧化炉90%以上依赖进口,涂胶显影机90%以上依赖进口,离子注入设备90%以上依赖进口。

再比如材料领域,光刻胶90%以上依赖进口掩膜板90%以上依赖进口,靶材80%以上依赖进口,湿电子化产品70%以上依赖进口,电子特种气体85%以上依赖进口等等。就连广大网友引以为傲的所谓冰刻机最核心的一个零部件之一的电子束刻机,目前我国技术也落后于国际先进水平,国产电子束刻机精度只有一微米左右,这个精度其实是很差的。

所以综合各种因素之后,大家要看清现实,不能盲目乐观,我国芯片想要超越欧美一时半会是不可能的。对我国来说,真正要把芯片做起来,不仅要攻破光刻机技术,更要沉下心来培养整个芯片产业链,这样才能真正的把芯片制造能力提升上去。

我国科学家首次获得纳米级光雕刻三维结构,此举对于光刻机的发展有何意义?

南京大学的科研团队发明出来的技术可以对激光移动的位置和方向进行控制,进而让晶体产生有效电场,使三锥结构实现擦除和直写。这项技术的研发让飞秒激光的精度达到纳米级别,而且在将这一技术运用到人工智能、通讯、光计算等领域时也能够促进相关行业的发展。

该项技术对激光的控制让传统飞秒,在光衍射上达到极限,而且所达到的精确度让其在实行操纵时能够减小误差,提高效率。将其运用到声学滤波器、光电调制器等光电芯片制备以及光计算、通讯等领域时可以让这些行业拥有较强的发展,也能够让我国在各个领域通过对这项技术的运用超越世界各国,成为该项技术的领先国家。

此外能够在实施光刻胶膜时达到更加精准的手段和途径,尤其是在半导体等晶体流程的操作上,通过化学试剂以及光刻手段可以让晶体的图案变得更加准确和清晰。这极大促进了元器件在芯片制造和制备的发展,让其可以实现最大程度的创新和完善。

总的来说这项技术只要有不断完善的发展,在民用芯片领域就能够起到独一无二的作用和地位,尤其是在集成电路的发展上,芯片让其在能量消耗以及宽带极限上可以实现重要发展,也能过半导体在各个行业领域中所起到的作用。通过这一项技术的推进,让其能够在高端技术发展上有着不可替代的地位,也能够促进当代科技朝着稳步发展的方向前进。可以说该项技术在雕刻半导体时,所达到的精准程度是其他国家所不能够做到的,这样一来我国在高端技术上的研发就能够遥遥领先于其他国家,在产品的生产制造上也能够拥有独一无二的发展地位,让其他国家不在歧视和嘲笑我国。

光刻工艺的原理是什么?

光刻工艺是利用类似照相制版的原理,在半导体晶片表面的掩膜层上面刻蚀精细图形的表面加工技术。也就是使用可见光和紫外光线把电路图案投影“印刷”到覆有感光材料的硅晶片表面,再经过蚀刻工艺去除无用部分,所剩就是电路本身了。光刻工艺的流程中有制版、硅片氧化、涂胶、曝光、显影、腐蚀、去胶等。

光刻是制作半导体器件和集成电路的关键工艺。自20世纪60年代以来,都是用带有图形的掩膜覆盖在被加工的半导体芯片表面,制作出半导体器件的不同工作区。随着集成电路所包含的器件越来越多,要求单个器件尺寸及其间隔越来越小,所以常以光刻所能分辨的最小线条宽度来标志集成电路的工艺水平。国际上较先进的集成电路生产线是1微米线,即光刻的分辨线宽为1微米。日本两家公司成功地应用加速器所产生的同步辐射X射线进行投影式光刻,制成了线宽为0.1微米的微细布线,使光刻技术达到新的水平。

我国科学家首次获得纳米级光雕刻三维结构,这一重大发现究竟有什么意义呢?

我国科学家首次获得纳米级光雕刻三维结构,这一重大发现意义是在科学研究方面提高了一个层次,也更好地使雕刻技术更厉害。