光刻技术未来发展趋势(光刻技术国内外发展状况和未来发展趋势)

2022-11-26 11:35:16 股票 xialuotejs

中国光刻机明年可以达到世界较为先进的水平,开始迈入芯片强国吗?

很多人将关注的焦点放在了手机和PC的芯片,忽略了大多数的芯片其实不需要很先进的制程,不是制程先进不好而是成本更加的重要,比如很多IoT芯片,14nm对于多数行业已经够了。高端光刻机所实现更小nm级别的制程,主要应用在对续航和芯片体积有要求的终端上,如手机和平板电脑。芯片的本质芯片的本质就是将大规模的集成电路小型化,并且封装在方寸之间的空间内。英特尔10nm一个单位占面积54*44nm,每平方毫米1.008亿个晶体管。(1nm是一根头发丝直径的10万分之一)

芯片制造的过程就如同用乐高盖房子一样,先由晶圆作为地基,再层层往上堆叠电路和晶体管,达成所期望的造型(也就是各式各样的芯片)。造一个房子如果没有良好的地基,盖出来的房子就会歪来歪去,不合自己所意,为了做出完美的房子,便需要一个平稳的基板。对芯片制造来说,这个基板就是晶圆。

芯片制造的难点要在方寸之间建造一座城市,这绝对会比米上刻字要难上无数倍,简单的用手操作是完不成这件事的。01晶体管的“栅极”越窄,芯片功耗越低,同时尺寸也就越小,所以芯片界是以栅极的宽带命名芯片的制程。

在电子显微镜下,观察、对比32nm和22nm晶体管

但栅极宽度并不代表一切,栅极之间的距离和内连接间距也是决定性能的关键要素,这两个距离决定了单位面积内晶体管的数量。比如台积电的7nm和英特尔的10nm名义上差一代,实际上半斤八两。英特尔10nm一个单位占面积54*44nm,每平方毫米1.008亿个晶体管;而台积电7nm一个单位占面积57*40nm,每平方毫米1.0123亿个晶体管。两者并没有代差。

挑战nm级别的物理极限,就需要使用光做刻刀的专用工具“光刻机”。光刻机的原理非常简单,它就是一台大型照相机,紫外光把要雕刻的电路板通过凸透镜打在涂抹了光刻胶的硅晶圆上,将电路印在上面。

难度在于光刻机必须要把工程师绘制的电路板精确无误的投到晶圆上,不允许有丝毫误差。一个硅原子的晶胞长度是0.565纳米,7纳米那才几个晶胞那么宽。光刻机的核心部件反射镜,工艺条件极其苛刻,瑕疵竟然是以皮米计算的。光刻机也必须在真空环境中工作,因为即便空气中没有任何灰尘,气体分子本身也会影响紫外光成像。

制作nm级别芯片的光刻机注定是特别复杂和精密的,一台光刻机的配件超越五万的零件,90%的配件来自全世界,美国的光栅,德国的镜头,瑞典的轴承,法国的阀件等等。可以说光刻机是集人类智慧的结晶。02制造芯片,没有设计图,拥有再强的制造能力都没有用。设计工程师的角色是特别重要的,比如:有的人建造的房子外型别扭、采光差、通道不合理,有的人建造的房子外形美光、采光好、通道合理。芯片多由专业芯片设计公司进行规划、设计,像高通、Intel、AMD等公司,都是自己设计芯片。所以芯片设计十分仰赖工程师的技术,工程师的素质影响着一个企业的价值。

有了完整规划后,接下来便是画出设计图。有蓝、红、绿、黄等不同颜色,每一种颜色代表着一张光罩,如下图。芯片设计图的复杂程度可想而知。

芯片并不是做小了才能完成电路实现的功能,芯片只是一个小的载体,通过这个载体能够实现更低的功耗、更高的执行效率。可以预见的是,以现有的技术不可能将芯片的制程无限度的缩小,未来一定会有更加先进的芯片制造工艺出现。贸易全球化是经济发展的必然趋势一个人不可能做到无所不知,无所不能,同样一个国家也不可能建设全能的产业链条。比如,中东的石油、俄罗斯的小麦、泰国的香米、美国的农业等。经济的本质是货物的交换和流通,未来社会的发展必然是贸易的全球化,通过整合全人类的智慧和科技产物来促进人类社会的发展。

这就很好解释,为什么我们需要从其他国家去购买光刻机和芯片。因为目前国内的资源和产业结构不足以形成芯片行业的优势,通过进口来解决目前国内的需求是最优选择。这就好比,我们自己也有石油,但是每年还是会从其他国家进口大量的原油的道理是一样的。光刻机和芯片撇开国家层面,仅仅只是从企业的层面或个人的层面来讲。如果光刻机和芯片是你的,你可能会教我怎么造芯片和光刻机吗?这就是典型的教会了徒弟饿死师傅。不会,你只可能将成品买给我。既然光刻机和芯片可以进口,为什么中国还要有plan

B(B计划)?中国是一个物产丰富、产业结构特别完善的国家,并不是没有能力制造供我们自己使用的芯片,实际上在军事、航空、交通、通信等很多领域都使用了我们自己的芯片。既然别人有更好的东西,为什么我们不直接拿来用,拿来学习?

但一味的依赖通过进口的光刻机和芯片,就会造成国内相关行业的退化,同时会造成人才和技术的断层。未来,科学技术将取代人力成为主要的生产力,这是任何一个人都知道的。所以我们要逐渐的形成产、学、研一体化的产业结构,产生自主的核心竞争力,才有可能在未来将要变革的时候,实现弯道超车。

另外,通常我们制定plan

B的时候,是考虑到了plan A的潜在的风险性。同样的,如果其他国家不出口光刻机和芯片给我们了,我们至少还有plan

B。只有这样一个国家的根基才不会动摇。科学技术的发展始终离不开人2011年,当时在任的美国总统奥巴马曾问苹果的乔布斯,怎么才能将苹果的生产线迁回美国,给美国带来更多的就业。乔布斯回答说:“这些工作是不会回来的。我们在中国雇佣了70万工人,背后需要3万名工程师的支持,如果你能教育出这么多工程师,我们就能把工厂迁回美国。”现在,苹果依然把中国作为最重要的生产基地。

综上所述,未来的竞争说到底还是人才的竞争,是数学、物理、化学等基础科学的竞争。显而易见,中国光刻机明年不可能达到世界先进的水平,但谁能说得清楚下一个5年、10年就发生了呢?以上个人浅见,欢迎批评指正。喜欢的可以关注我,谢谢!认同我的看法的请点个赞再走,再次感谢!

5nm激光光刻技术,是否预示着我们即将能取代ASML?

5nm激光光刻技术,预示着我们即将能取代ASML,但是5nm激光光刻技术还未安全成熟,因此还是要用ASML技术!

光刻技术未来发展趋势(光刻技术国内外发展状况和未来发展趋势) 第1张

中科院光刻技术又获新突破,国产芯片距离先进水平还差多远?

自媒体经常以“光刻机或者芯片各种新突破”为标题夺人眼球,结果呢?不了了了之罢了!作为世界最尖端的技术之一,哪有那么容易突破?虽然我们期待我们的科学家、企业、国家能够早日取得突破,但是我们也要正视艰难,我们只能一步一步向前迈进,脚踏实地研究创造!

作为平凡的我们,想要为国家做点贡献的话,请支持国货!请给 科技 人员、企业和国家多一点时间和经济力量!

国内好像做到7毫米5毫米,向3毫米进入?这已经很快了。大有后来者居上的趋势。也有绕过心片的路径。

我们都希望在核心技术上面自主掌握,不被掐脖子限制,但是半导体领域上面,最关键的一些环节,我们仍然没有实现自主,还需要用过进口来满足,其中光刻机,光刻胶,硅片平磨设备等等这些都还要靠买,自己的确还没有这方面实现自主,有国内的权威说过,我们想要达到世界现在的水平,按照现在的投入还需要15年左右的时间。

怎么说呢我们现在真正国产化的只有90纳米技术的光刻机,上海微电正在研制的28纳米光刻机,一直都有报道说会在年底推出来,但是现实却是已经这样说了好几个年头了,而且内部的人接受采访说,短时间内很难实现市场运用,现在还在进行各项功能的调试,这个过程需要很长的时间。

也就是说现在还在实验室里面,距离产能化运用还有很长时间,而且据说生产的速度也是不够快每小时只有75片,这样的速度远达不到厂商的要求,更重要的是一个大家一直兴奋的消息,那就是研究获得了光刻机的修正技术,这个是最近发布出来的让很多人振奋的消息。

这的确是一大发现突破,只是这个要运用到现实生产当中,短时间根本不可能,因为这个技术现在只是理论论证阶段,也就是说还只是在纸面上,还需要发表论文,而远没有真正的进行实验,就更谈不上说短时间运用出来了,所以这个技术在长远来看对我们是一大突破,但是在短时间来看对我们没有任何帮助。

也就是说我们在未来的十年之内,仍然无法真正的摆脱现在的情况,现在我们运用的90纳米以内的生产工艺都是国外的,我们自己的只是达到90纳米的级别,所以在理论技术领域论证得到突破是好事,但是现实中还需要认清现实,现在的我们在这上面仍然差距巨大。

以现在的情况来看,我们距离世界先进技术,至少在15年以上,这个数字属于最保守的估计,毕竟我们在进步别人也并没有停下脚步,所以我们现在需要的付出会更多,现阶段不得不接受的现实就是,在半导体领域上面,我们跟外国的差距仍然非常的巨大,这不是说理论上面的突破就能短时间改变的。

如果说我们国产28纳米技术的光刻机,能在五年之内投入市场,那就是值得让我们欣喜若狂了,虽然说28纳米技术,但是可以生产出来七纳米工艺的芯片,而且良品率还是比较高的,这个投入市场才是最真实的稍微改变现实,而光刻修正技术,现在只是理论阶段,离现实太远,理论上的突破可喜可贺,但是短时间没办法帮助我们改变眼前的现实。

近了,中国科学家只要团结一致,国产蕊片不出一年,最多二年面世。

举国之力,芯片指日可待

这点可以肯定,中国 科技 只要突破了,玩的都是先进,超越!只要是公开了,就离量产不远了。

科学技术是不能搞大跃进的!它是若干科学家技术人员长年累月辛勤付出,逐渐集累的成果!来不得半点虚假!要承认我们起步晚,和发达国家比差距还不小!

现在我们党和国家十分重视 科技 兴国,顷全国 科技 人员之力,赶追或超越世界先进水平。我们现在可以量产28,那么,不需很多年,中国会把芯片变成白菜价!

中国人会创造奇迹的?弯道超车,后来居上,后发先至。到时芯片白菜价。让制裁我们的后悔去,我相信我们的科学家,他们不会让国人失望。

其实,在芯片领域中国并非一事无成,芯片千万种,军用芯片,工业芯片,民用芯片,专用芯片,其中民用芯片又分千千万万,民用芯片以手机芯片最难,而最难的是设备,

残酷的现实再一次告诉我们:生于忧患,死于安乐!在美国这个强大的对手面前,中国要始终保持强烈的忧患意识,坚定不移地发展自已,久久为功,方能善作善成,丝毫都不能懈怠。芯片领域如此,其他领域亦如此!

光刻芯片不属于高科技高科技属于新型材料研发的量子和中微子技术

基于光刻技术的芯片制造,已经发展了将近六十年了,从半导体材料发展趋势来看,已经属于夕阳工业。从电子信息科学技术发展趋势来看,芯片制造已经不属于高 科技 ,其技术在高 科技 发展过程中已经被剔除,将会有新型材料研发取代半导体工艺制造方法。

我们必须看到,在 科技 发展整个过程中,只有新型材料研发和利用新材料的制造工艺才属于高 科技 领域。而芯片制造依然是建立在旧材料和旧的工艺制造方法上,显然已经落后于现代 科技 发展速度了。同时我们也应该看到,超微型的量子制造技术已经被用在新型材料制造工艺上了,而中微子技术也已经初见端倪。研发基于量子技术和中微子技术的新型材料将是高 科技 领域的主要方向。

这些新型材料,将在被称为工业制造的粮食的化工材料中大量涌现。一些改变性质和状态的物理化学合成的新型材料,将会使我们所使用的电子信息技术产品模块化,一体化。这种模块化,一体化往往是通过新的制造工艺实现的。更明确的说,以后我们用的手机就是一个一次性的贴片,电脑显示器和电视都将是一次性模块,既不能拆卸,也不能维修,看上去就是一块玻璃,或者是一快打不碎的透明塑料板。

而超微型制造工艺,通过人工智能完成这种作业,已经能够让我们的任何新型设计工艺得以实现,量子矩阵播印技术也可以通过人工智能,在利用新型材料中,让电子信息制造业向模块化方向发展。

因此,研究和发展新型材料,推出和制造新型材料才属于现代高 科技 领域的发展方向。预计明年,或不久的几年中,新型材料的研发成果将会大量出现,应用新型材料制造出来的视觉产品和通信产品,和许多民用产品将会改变我们的认知。

推进半导体技术发展的五大趋势

过去几十年,全球半导体行业增长主要受台式机、笔记本电脑和无线通信产品等尖端电子设备的需求,以及基于云计算兴起的推动。这些增长将继续为高性能计算市场领域开发新应用程序。

首先,5G将让数据量呈指数级增长。我们需要越来越多的服务器来处理和存储这些数据。2020年Yole报告,这些服务器核心的高端CPU和GPU的复合年增长率有望达到29%。它们将支持大量的数据中心应用,比如超级计算和高性能计算服务。在云 游戏 和人工智能等新兴应用的推动下,GPU预计将实现更快增长。例如,2020年3月,互联网流量增长了近50%,法兰克福的商业互联网数据交换创下了数据吞吐量超过每秒9.1兆兆位的新世界纪录。

第二个主要驱动因素是移动SoC——智能手机芯片。这个细分市场增长虽然没有那么快, 但这些SoC在尺寸受限的芯片领域对更多功能的需求,将推动进一步技术创新。

除了逻辑、内存和3D互联的传统维度扩展之外,这些新兴应用程序将需要利用跨领域的创新。这需要在器件、块和SoC级别进行新模块、新材料和架构的改变,以实现在系统级别的效益。我们将这些创新归纳为半导体技术的五大发展趋势。

趋势一:摩尔定律还有用,将为半导体技术续命8到10年…

在接下来的8到10年里,CMOS晶体管的密度缩放将大致遵循摩尔定律。这将主要通过EUV模式和引入新器件架构来实现逻辑标准单元缩放。

在7nm技术节点上引入了极紫外(EUV)光刻,可在单个曝光步骤中对一些最关键的芯片结构进行了设计。在5nm技术节点之外(即关键线后端(BEOL)金属节距低于28-30nm时),多模式EUV光刻将不可避免地增加了晶圆成本。最终,我们希望高数值孔径(High-NA) EUV光刻技术能够用于行业1nm节点的最关键层上。这种技术将推动这些层中的一些多图案化回到单图案化,从而提供成本、产量和周期时间的优势。

Imec对随机缺陷的研究对EUV光刻技术的发展具有重要意义。随机打印故障是指随机的、非重复的、孤立的缺陷,如微桥、局部断线、触点丢失或合并。改善随机缺陷可使用低剂量照射,从而提高吞吐量和成本。

为了加速高NA EUV的引入,我们正在安装Attolab,它可以在高NA EUV工具面世之前测试一些关键的高NA EUV材料(如掩膜吸收层和电阻)。目前Attolab已经成功地完成了第一阶段安装,预计在未来几个月将出现高NA EUV曝光。

除了EUV光刻技术的进步之外,如果没有前沿线端(FEOL)设备架构的创新,摩尔定律就无法延续。如今,FinFET是主流晶体管架构,最先进的节点在6T标准单元中有2个鳍。然而,将鳍片长度缩小到5T标准单元会导致鳍片数量减少,标准单元中每个设备只有一个鳍片,导致设备的单位面积性能急剧下降。这里,垂直堆叠纳米薄片晶体管被认为是下一代设备,可以更有效地利用设备占用空间。另一个关键的除垢助推器是埋地动力轨(BPR)。埋在芯片的FEOL而不是BEOL,这些BPR将释放互连资源路由。

将纳米片缩放到2nm一代将受到n-to-p空间约束的限制。Imec设想将Forksheet作为下一代设备。通过用电介质墙定义n- p空间,轨道高度可以进一步缩放。与传统的HVH设计相反,另一个有助于提高路由效率的标准单元架构发展是针对金属线路的垂直-水平-垂直(VHV)设计。最终通过互补场效应晶体管(CFET)将标准cell缩小到4T,之后充分利用cell层面上的第三维度,互补场效应晶体管通过将n-场效应晶体管与p-场效应晶体管折叠。

趋势2: 在固定功率下,逻辑性能的提高会慢下来

有了上述的创新,我们期望晶体管密度能遵循摩尔所规划的路径。但是在固定电源下,节点到节点的性能改进——被称Dennard缩放比例定律,Dennard缩放比例定律(Dennard scaling)表明,随着晶体管变得越来越小,它们的功率密度保持不变,因此功率的使用与面积成比例;电压和电流的规模与长度成比例。

世界各地的研究人员都在寻找方法来弥补这种减速,并进一步提高芯片性能。上述埋地电力轨道预计将提供一个性能提高在系统水平由于改进的电力分配。此外,imec还着眼于在纳米片和叉片装置中加入应力,以及提高中线的接触电阻(MOL)。

二维材料如二硫化钨(WS2)在通道中有望提高性能,因为它们比Si或SiGe具有更强的栅长伸缩能力。其中基于2d的设备架构包括多个堆叠的薄片非常有前景,每个薄片被一个栅极堆叠包围并从侧面接触。模拟表明,这些器件在1nm节点或更大节点上比纳米片的性能更好。为了进一步改善这些器件的驱动电流,我们着重改善通道生长质量,在这些新材料中加入掺杂剂和提高接触电阻。我们试图通过将物理特性(如生长质量)与电气特性相关联来加快这些设备的学习周期。

除了FEOL, 走线拥挤和BEOL RC延迟,这些已经成为性能改善的重要瓶颈。为了提高通径电阻,我们正在研究使用Ru或Mo的混合金属化。我们预计半镶嵌(semi-damascene)金属化模块可同时改善紧密距金属层的电阻和电容。半镶嵌(semi-damascene) 可通过直接模式和使用气隙作为介电在线路之间(控制电容增加)

允许我们增加宽高比的金属线(以降低电阻)。同时,我们筛选了各种替代导体,如二元合金,它作为‘good old’ Cu的替代品,以进一步降低线路电阻。

趋势3:3D技术使更多的异构集成成为可能

在工业领域,通过利用2.5D或3D连接的异构集成来构建系统。这些有助于解决内存问题,可在受形状因素限制的系统中添加功能,或提高大型芯片系统的产量。随着逻辑PPAC(性能-区域-成本)的放缓,SoC 的智能功能分区可以提供另一个缩放旋钮。一个典型的例子是高带宽内存栈(HBM),它由堆叠的DRAM芯片组成,这些芯片通过短的interposer链路直接连接到处理器芯片,例如GPU或CPU。最典型的案例是Intel Lakefield CPU上的模对模堆叠, AMD 7nm Epyc CPU。在未来,我们希望看到更多这样的异构SOC,它是提高芯片性能的最佳桥梁。

在imec,我们通过利用我们在不同领域(如逻辑、内存、3D…)所进行的创新,在SoC级别带来了一些好处。为了将技术与系统级别性能联系起来,我们建立了一个名为S-EAT的框架(用于实现高级技术的系统基准测试)。这个框架可评估特定技术对系统级性能的影响。例如:我们能从缓存层次结构较低级别的片上内存的3D分区中获益吗?如果SRAM被磁存储器(MRAM)取代,在系统级会发生什么?

为了能够在缓存层次结构的这些更深层次上进行分区,我们需要一种高密度的晶片到晶片的堆叠技术。我们已经开发了700nm间距的晶圆-晶圆混合键合,相信在不久的将来,键合技术的进步将使500nm间距的键合成为可能。

通过3D集成技术实现异质集成。我们已经开发了一种基于sn的微突起互连方法,互连间距降低到7µm。这种高密度连接充分利用了透硅通孔技术的潜力,使16x更高的三维互联密度在模具之间或模具与硅插接器之间成为可能。这样就大大降低了对HBM I/O接口的SoC区域需求(从6 mm2降至1 mm2),并可能将HBM内存栈的互连长度缩短至多1 mm。使用混合铜键合也可以将模具直接与硅结合。我们正在开发3µm间距的模具到晶圆的混合键合,它具有高公差和放置精度。

由于SoC变得越来越异质化,一个芯片上的不同功能(逻辑、内存、I/O接口、模拟…)不需要来自单一的CMOS技术。对不同的子系统采用不同的工艺技术来优化设计成本和产量可能更有利。这种演变也可以满足更多芯片的多样化和定制化需求。

趋势4:NAND和DRAM被推到极限;非易失性存储器正在兴起

内存芯片市场预测显示,2020年内存将与2019年持平——这一变化可能部分与COVID-19减缓有关。2021年后,这个市场有望再次开始增长。新兴非易失性存储器市场预计将以50%的复合年增长率增长,主要受嵌入式磁随机存取存储器(MRAM)和独立相变存储器(PCM)的需求推动。

NAND存储将继续递增,在未来几年内可能不会出现颠覆性架构变化。当今最先进的NAND产品具有128层存储能力。由于晶片之间的结合,可能会产生更多的层,从而使3D扩展继续下去。Imec通过开发像钌这样的低电阻字线金属,研究备用存储介质堆,提高通道电流,并确定控制压力的方法来实现这一路线图。我们还专注于用更先进的FinFET器件取代NAND外围的平面逻辑晶体管。我们正在 探索 3D FeFET与新型纤锌矿材料,作为3D NAND替代高端存储应用。作为传统3D NAND的替代品,我们正在评估新型存储器的可行性。

对于DRAM,单元缩放速度减慢,EUV光刻可能需要改进图案。三星最近宣布EUV DRAM产品将用于10nm (1a)级。除了 探索 EUV光刻用于关键DRAM结构的模式,imec还为真正的3D DRAM解决方案提供了构建模块。

在嵌入式内存领域,我通过大量的努力来理解并最终拆除所谓的内存墙,CPU从DRAM或基于SRAM的缓存中访问数据的速度有多快?如何确保多个CPU核心访问共享缓存时的缓存一致性?限制速度的瓶颈是什么? 我们正在研究各种各样的磁随机存取存储器(MRAM),包括自旋转移转矩(STT)-MRAM,自旋轨道转矩(SOT)-MRAM和电压控制磁各向异性(VCMA)-MRAM),以潜在地取代一些传统的基于SRAM的L1、L2和L3缓存(图4)。每一种MRAM存储器都有其自身的优点和挑战,并可能通过提高速度、功耗和/或内存密度来帮助我们克服内存瓶颈。为了进一步提高密度,我们还在积极研究可与磁隧道结相结合的选择器,这些是MRAM的核心。

趋势5:边缘人工智能芯片行业崛起

边缘 AI预计在未来五年内将实现100%的增长。与基于云的人工智能不同,推理功能是嵌入在位于网络边缘的物联网端点(如手机和智能扬声器)上的。物联网设备与一个相对靠近边缘服务器进行无线通信。该服务器决定将哪些数据发送到云服务器(通常是时间敏感性较低的任务所需的数据,如重新培训),以及在边缘服务器上处理哪些数据。

与基于云的AI(数据需要从端点到云服务器来回移动)相比,边缘 AI更容易解决隐私问题。它还提供了响应速度和减少云服务器工作负载的优点。想象一下,一辆需要基于人工智能做出决定的自动 汽车 。由于需要非常迅速地做出决策,系统不能等待数据传输到服务器并返回。考虑到通常由电池供电的物联网设备施加的功率限制,这些物联网设备中的推理引擎也需要非常节能。

今天,商业上可用的边缘 AI芯片,加上快速GPU或ASIC,可达到1-100 Tops/W运算效率。对于物联网的实现,将需要更高的效率。Imec的目标是证明推理效率在10.000个Tops /W。

通过研究模拟内存计算架构,我们正在开发一种不同的方法。这种方法打破了传统的冯·诺伊曼计算模式,基于从内存发送数据到CPU(或GPU)进行计算。使用模拟内存计算,节省了来回移动数据的大量能量。2019年,我们演示了基于SRAM的模拟内存计算单元(内置22nm FD-SOI技术),实现了1000Tops/W的效率。为了进一步提高到10.000Tops/W,我们正在研究非易失性存储器,如SOT-MRAM, FeFET和基于IGZO(铟镓锌氧化物)的存储器。