芯片制程指的是晶体管结构中的栅极的线宽,也就是纳米工艺中的数值,宽度越窄,功耗越低。
一般说的芯片14nm、10nm、7nm、5nm,指的是芯片的制程工艺,也就是处理内CPU和GPU表面晶体管门电路的尺寸。一般来说制程工艺先进,晶体管的体积就越小,那么相同尺寸的芯片表面可以容纳的晶体管数量就越多,性能也就越强。
随着芯片技术的发展,芯片制程已经可以做到2nm,不过这是实验室中的数据,具体到量产工艺,各国不尽相同。目前最先进的量产工艺是5nm,中国台湾的台积电,韩国的三星电子都已经推出相关的技术,实现了量产出货。
简介
芯片的制程从最初的0.35微米到0.25微米,后来又到0.18微米、0.13微米、90nm、65nm、45nm、32nm和14nm。在提高芯片工艺制程的过程中,大约需要缩小十倍的几何尺寸及功耗,才能达到10nm甚至7nm。
理论上而言,许多因素都在工艺制程上发挥作用。以7nm为例,更小的几何尺寸意味着每平方毫米有更多的晶体管,意味着更高的密度、时钟、散热设计功耗以及更低的晶体管电压。
这是一篇关于半导体行业发展的长篇介绍,文中有些表达上对行业人士来说可能会存在些许不严谨,欢迎交流。
首先要解释两个概念: 芯片设计与芯片代工
它们是有区别的,在这里举个例子:高通、三星、华为都可以设计芯片。这其中,三星是可以自己生产芯片的,而高通和华为,是需要找代工的。
三星和台积电,是两家最广为人知的芯片代工厂。
比如美国高通的芯片,是自己设计的。但它并不生产芯片,比如高通的高端芯片,是交给三星来代工的,华为设计的高端芯片则是交给台积电来代工。
为什么大陆目前生产不了高端芯片?
论芯片设计,我们已经不弱了,华为的麒麟芯片就是自己研发的,在高端芯片上已经算是很强了。
但麒麟芯片的代工却没有找大陆厂商。
因为即使是大陆目前第一的中芯国际,现在也没有能力生产麒麟970芯片。
华为麒麟970芯片,工艺制程是10nm。
关于工艺制程后面会有详细介绍,就是数字越小,说明制程越先进。我们手机里的芯片,制程工艺好不好,决定了芯片的性能。
7nm的芯片,必然比10nm的强,10nm的又强于14nm工艺的。
在2017年,三星和台积电,都掌握了最先进的10nm工艺。所以现在10nm 的生产工艺,是垄断在英特尔、三星和台积电手里的。
而大陆最先进的中芯国际,只能生产最高规格28nm工艺的。
为什么大陆的生产工艺落后?
主要是光刻机: 因为芯片的生产,关键是要光刻机。 说到光刻机这个行业,就不得不提荷兰 的ASML Holding N.V
简单说一下光刻机:
其实早期的光刻机的原理像幻灯机一样简单,就是把光通过带电路图的掩膜 (Mask,后来也叫光罩) 投影到涂有光敏胶的晶圆上(关于晶圆,下面芯片设计中会有详细介绍)。早期 60 年代的光刻,掩膜版是 1:1 尺寸紧贴在晶圆片上,而那时晶圆也只有 1 英寸大小。
因此,光刻那时并不是高 科技 ,半导体公司通常自己设计工装和工具,比如英特尔开始是买 16 毫米摄像机镜头拆了用。只有 GCA, KS 和 Kasper 等很少几家公司有做过一点点相关设备。
60 年代末,日本的尼康和佳能开始进入这个领域,毕竟当时的光刻不比照相机复杂。
1978 年,GCA 推出真正现代意义的自动化步进式光刻机 (Stepper),分辨率比投影式高 5 倍达到 1 微米。
但此时的光刻机行业依旧是个小市场,一年卖几十台的就算大厂了。因为半导体厂商就那么多,一台机器又能用好多年。这导致你的机器落后一点,就没人愿意买了。技术领先是夺取市场的关键,赢家通吃。
80 年代一开始,GCA 的 Stepper 还稍微领先,但很快尼康发售了自己首台商用 Stepper NSR-1010G,拥有更先进的光学系统极大提高了产能。两家开始一起挤压了其它厂商的份额。
到了 1984 年,在光刻行业,尼康和 GCA 平起平坐,各享三成市占率。Ultratech 占约一成,Eaton、PE、佳能、日立等剩下几家瓜分剩下的三成。
但转折也发生在这一年,这一年飞利浦在实验室里研发出 stepper 的原型,但是不够成熟。因为光刻市场太小,飞利浦也不能确认它是否有商业价值,去美国和 PE、GCA、Cobilt、IBM 等谈了一圈也没人愿意合作。
很巧合有家荷兰小公司叫 ASM International 的老板 Arthur Del Prado 听说了有这么回事,主动要求合作。但这家代理出身的公司只有半导体一些经验,对光刻其实不太懂,等于算半个天使投资加半个分销商。飞利浦犹豫了一年时间,最后勉强同意了设立 50:50 的合资公司。1984 年 4 月 1 日 ASML 成立的时候,只有 31 名员工,在飞利浦大厦外面的木板简易房里工作。
ASML 最早成立时的简易平房,后面的玻璃大厦是飞利浦。Credit: ASML
ASML 在 1985 年和蔡司 (Zeiss) 合作改进光学系统,终于在 1986 年推出非常棒的第二代产品 PAS-2500,并第一次卖到美国给当时的创业公司 Cypress,今天的 Nor Flash 巨头。
但接下来的一年,1986 年半导体市场大滑坡,导致美国一帮光刻机厂商都碰到严重的财务问题。ASML 规模还小,所以损失不大,还可以按既有计划开发新产品。但,GCA 和 PE 这些老牌厂商就顶不住了,它们的新产品开发都停滞了下来。
1988 年 GCA 资金严重匮乏被 General Signal 收购,又过了几年 GCA 找不到买主而破产。1990 年,PE 光刻部也支撑不下去被卖给 SVG。
1980 年还占据大半壁江山的美国三雄,到 80 年代末地位完全被日本双雄取代。这时 ASML 大约有 10% 的市场占有率。
忽略掉美国被边缘化的 SVG 等公司,90 年代后,一直是 ASML 和尼康的竞争,而佳能在旁边看热闹。
在后来 ASML 推出浸入式 193nm 产品,紧接着尼康也宣布自己的 157nm 产品以及 EPL 产品样机完成。然而,浸入式属于小改进大效果,产品成熟度非常高,而尼康似乎是在做实验,因此几乎没有人去订尼康的新品。
这导致后面尼康的大溃败。尼康在 2000 年还是老大,但到了 2009 年 ASML 已经市占率近 7 成遥遥领先。尼康新产品的不成熟,也间接关联了大量使用其设备的日本半导体厂商的集体衰败。
至于佳能,当它们看到尼康和 ASML 在高端光刻打得如此厉害就直接撤了。直接开发低端光刻市场,直到现在它们还在卖 350nm 和 248nm 的产品,给液晶面板以及模拟器件厂商供货。
再回来,英特尔、三星和台积电之所以能生产 10nm 工艺的芯片,首先是它们能从 ASML 进口到高端的光刻机,用于生产 10nm 芯片。
而大陆没有高端的光刻机,用中低端的光刻机又缺乏技术,所以暂时只能生产工艺相对落后的芯片。
下面我们谈一谈芯片的设计,在谈论设计之前,我们需要知道 CPU、GPU、微架构和指令集 等概念。
CPU的含义,亦即中央处理器,是负责计算机主要运算任务的组件。功能就像人的大脑。可能大家听过CPU有 x86、ARM 这样的分类,前者主要用于PC而后者主要用于手机平板等设备。
CPU执行在计算任务时都需要遵从一定的规范,程序在被执行前都需要先翻译为CPU可以理解的语言。这种语言被称为 指令集 (ISA,Instruction Set Architecture)。程序被按照某种指令集的规范翻译为CPU可识别的底层代码的过程叫做编译(compile)。像x86、ARM v8、MIPS等都是指令集的代号。同时指令集可以被扩展。厂商开发兼容某种指令集的CPU需要指令集专利持有者授权,典型例子如Intel授权AMD,使后者可以开发兼容x86指令集的CPU。
CPU的基本组成单元即为核心(core)核心的实现方式被称为 微架构 (microarchitecture)和指令集类似,像Haswell、Cortex-A15等都是微架构的代号。微架构的设计影响核心(core)可以达到的最高频率、核心在一定频率下能执行的运算量、一定工艺水平下核心的能耗水平等等。
但值得注意的是: 微架构与指令集 是两个不同的概念:指令集是CPU选择的语言,而微架构是具体的实现。
以兼容ARM指令集的芯片为例:ARM公司将自己研发的指令集叫做ARM指令集,同时它还研发具体的微架构,例如Cortex系列并对外授权。
但是,一款CPU使用了ARM指令集并不等于它就使用了ARM研发的微架构。像高通、苹果等厂商都自行开发了兼容ARM指令集的微架构,同时还有许多厂商使用ARM开发的微架构来制造CPU,比如华为的麒麟芯片。通常,业界认为 只有具备独立的微架构研发能力的企业才算具备了CPU研发能力 ,而是否使用自行研发的指令集无关紧要。微架构的研发也是IT产业技术含量最高的领域之一。
以麒麟980为例,最主要的部分就是 CPU 和 GPU 。其中 Cortex-A76 和 Mali-G76 都是华为找ARM买的微架构授权,华为可以自研微架构吗?肯定是可以的,但要想达到苹果那样应用在手机系统上还有很长一段路要走,最起码现在看来是这样,除了自身研发会遇到各种问题外,因为芯片的开发和软件开发一样,需要EDA工具,使用ARM的微构架,它们会提供很多工具,这些东西也挺核心的,所以一旦另起炉灶就需要考虑各个方面的问题。
弄清楚了这些,就可以开始设计芯片了,但这一步也是非常复杂繁琐的。
芯片制造的过程就像盖房子一样,先有 晶圆 作为地基,然后再层层往上叠,经过一系列制造流程后,就可产出必要的 IC 芯片了。
那什么是晶圆呢?
晶圆(wafer), 是制造各种制式芯片的基础。我们可以将芯片制造看作盖房子,而晶圆就是一个平稳的地基。在固体材料中,有一种特殊的晶体结构──单晶(Monocrystalline)。它的特性就是原子一个接着一个紧密的排列,可以形成一个平整的原子表层。因此,我们采用单晶做成晶圆。但是,该如何产生这样的材料呢,主要有二个步骤,分别为 纯化以及拉晶 ,之后便能完成这样的材料。
纯化分成两个阶段,第一步是冶金级纯化,此一过程主要是加入碳,以氧化还原的方式,将氧化硅转换成 98% 以上纯度的硅。但是,98% 对于芯片制造来说依旧不够,仍需要进一步提升。因此,将再进一步采用 西门子制程(Siemens process) 作纯化,将获得半导体制程所需的高纯度多晶硅。
接着,就是 拉晶 。
首先,将前面所获得的高纯度多晶硅融化,形成液态的硅。然后,以单晶的 硅种(seed) 和液体表面接触,一边旋转一边缓慢的向上拉起。至于为何需要单晶的硅种,是因为硅原子排列就和人排队一样,会需要排头让后来的人该如何正确的排列,硅种便是重要的排头,让后来的原子知道该如何排队。最后,待离开液面的硅原子凝固后,排列整齐的单晶硅柱便完成了。
但一整条的硅柱并无法做成芯片制造的基板,为了产生一片一片的硅晶圆,接着需要以钻石刀将硅晶柱横向切成圆片,圆片再经由抛光便可形成芯片制造所需的硅晶圆。
至于8寸、12寸晶圆又代表什么东西呢?很明显就是指表面经过处理并切成薄圆片后的直径。尺寸愈大,拉晶对速度与温度的要求就更高,制作难度就越高。
经过这么多步骤,芯片基板的制造总算完成了,下一步便是芯片制造了。该如何制作芯片呢?
IC芯片,全名集成电路(Integrated Circuit),由它的命名可知它是将设计好的电路,以堆叠的方式组合起来。
从上图我们可以看出,底部蓝色的部分就是晶圆,而红色以及土黄色的部分,则是于 IC 制作时要设计的地方,就像盖房子要设计怎样的样式。
然后我们看 红色的部分 ,在 IC 电路中,它是整颗 IC 中最重要的部分,将由多种逻辑闸组合在一起,完成功能齐全的 IC 芯片,因此也可以看作是 根基上的根基 。
而 黄色的部分 ,不会有太复杂的构造,它的主要作用是将红色部分的 逻辑闸相连在一起 。之所以需要这么多层,是因为有太多线路要连结在一起,在单层无法容纳所有的线路下,就要多叠几层来达成这个目标了。在这之中,不同层的线路会上下相连以满足接线的需求。
然后开始制作这些部分:
制作 IC 时,可以简单分成4 种步骤。虽然实际制造时,制造的步骤会有差异,使用的材料也有所不同,但是大体上皆采用类似的原理。
完成这些步骤之后,最后便在一整片晶圆上完成很多 IC 芯片,接下来只要将完成的方形 IC 芯片剪下,便可送到封装厂做封装。
封装:
经过漫长的流程,终于获得一颗 IC 芯片了。然而一颗芯片相当小且薄,如果不在外施加保护,会被轻易的刮伤损坏。此外,因为芯片的尺寸微小,如果不用一个较大尺寸的外壳,不容易安置在电路板上,所以才需要最后的封装。
封装的方式有很多种,常见的有双排直立式封装(Dual Inline Package;DIP),球格阵列(Ball Grid Array,BGA)封装,SoC(System On Chip)封装以及 SiP(System In Packet)封装。
完成封装后,然后还需要进入测试阶段 ,在这个阶段是为了确认封装完的 IC 是否能正常的运作,检测没问题后便可出货给组装厂,做成我们所见的电子产品。
至此,完成整个制作流程。
光刻机是制造芯片的基础。
其实,大多数人认为,芯片技术是综合性水平较高的技术,而光刻机就把“尖刀”,刺在心口,芯片是命,光刻机是防护的存在。但是,我国因为光刻机的限制,对于我们来说,没有光刻机,就警惕芯片带来的危机。那么,制造芯片制造难吗?光刻机和芯片有什么关系,为什么没有光刻机就制造不了芯片?
一款芯片成型,应用到设备中,需要经过多个步骤:设计、制造和封装以及测试。设计和制造是芯片的精髓所在,说设计,熟知的高通,苹果等科技公司实都是术语设计类的公司。通过EDA设计,必须提到的是,这款软件是我们芯片的软肋。设计上,华为能够做到符合设计的需求,关键在制造层次。芯片制造的步骤,更易理解芯片制造的困难程度。
将晶圆提炼出来,提炼出来的单晶硅,做成硅锭,再切割成数个圆片,这就是成为晶圆的东西;在晶圆上涂抹光刻胶是制约我们发展的因素。光刻胶,来自于日本和美国两大国家,特别是高端,涂胶显影机只有日本能够制造出来;在晶圆上涂抹光刻胶,通过光刻机的光源,使胶水固化,按照设计好的线路图,没线路图,晶圆固化固化线路图。遗憾的是,美国光源以及德国镜头组成了ASML的光刻机;蚀刻,我国蚀刻发展迅速。需要溶解多余的涂层。光刻胶已经固化,必须知道不需要的涂层也已经消失的痕迹;进入蚀刻,溶解不需的涂层,留下光刻,形成凹槽。注入离子元素,改变导电特性。
芯片的步骤中,缺乏光刻机。包括EDA相关的设计软件;日本美国的光刻胶,涂胶显影机,光刻机,以及离子注入机都是关键所在。
简单一点解读,两种机器:
首先工艺不同:刻蚀机是将硅片上多余的部分腐蚀掉,光刻机是将图形刻到硅片上;
其次难度不同:光刻机的难度和精度大于刻蚀机。
蚀刻机和光刻机其实就是完全不同的两种设备。
不论从功能还是结构上来说都是天差地别,光刻机是整个芯片制造过程中最为
核心的设备,芯片的制程是由光刻机决定的,而不是蚀刻机。
刻蚀机就是在光刻完成以后才登场的设备,也是光刻完成以后最为重要的设备之一。刻蚀机最主要的作用就是按照光刻机已经标注好的线去做基础建设,把不需要的地方给清除掉,只留下光刻过程中
标注好的线路。
首先从电路硬件设计与应用来说,我们在设计电路时选择芯片主要考虑芯片的性能与价格、可靠性与外形封装形式等几个方面,对于芯片内部的制造则考虑的很少。
对于14nm(纳米)和7nm(纳米)是从芯片的制造工艺方面来说明的,对于两者来说肯定是7nm(纳米)技术制造出来的芯片其性能更优越,在相同的面积中所集成的晶体管越多芯片的各种性能就越高,比如以处理器为例,用7nm(纳米)技术制作的CPU肯定比14nm(纳米)技术制作的CPU在晶体管数量方面、处理速度方面、功耗方面以及温升等方面都会高出一个数量级。所以用7nm(纳米)制程制作的芯片在各个方面会全面“碾压”14nm(纳米)制程的芯片。以上是用7nm(纳米)技术比14nm(纳米)技术从芯片的各种性能得到提升做出的对比。
另一方面14nm(纳米)和7nm(纳米)的芯片在设计方法和所用的技术上也是有区别的。在制作难度上肯定7nm(纳米)技术要比14nm(纳米)技术难度更大;在制作费用上两者的差距也是有着很大区别的。比如芯片制造的核心设备光刻机就是一个很大的投资,7nm(纳米)光刻机要比14nm(纳米)光刻机在价格上要贵出许多,再加上设计规则与技术的不同都会增加其成本。
芯片制程升级的技术难度。在体积不断缩小的芯片里要放十几亿个晶体管,并且要保持性能和功耗,需要技术支持、创新。制程从14nm到7nm,芯片速率、功耗、集成度要做出均衡。目前80%以上的芯片都是10nm以上制程,从14nm到7nm,跨越到10nm以下,越进一步,难度越大。7nm将是一个长期存在的制程,功耗、性能、面积、成本能获得很好的平衡,再到5nm、3nm,平衡难度更大。
提取失败财务正在清算,解决方法步骤件事就是冷静下来,保持心...
本文目录一览:1、邮政银行2、东吴基金管理有限公司3、邮政...
本文目录一览:1、联发科前十大股东2、中国经济改革研究基金会...
申万菱信新动力5.23净值1、申万菱信新动力股票型证券投...
本文目录一览:1、2000年至2020年黄金价格表2、3002...